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Motivation
• Automatic MT evaluation requires human-

translated reference sentences	



• BLEU (Papineni et al., 2001)	



• METEOR (Lavie et al, 2004)	



• Reference sentences are “expensive”, especially 
for new domains and resource-poor languages	



• We would like to estimate the quality of a given 
MT output, without the use of reference 
sentences



Our Approach

• Classify text, at sentence level, as MT or 
human	



• Use the classification accuracy as a “proxy” 
for quality estimation	



• The more our classifier confuses MT 
sentences as human sentences, the better 
the translation quality is
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Features

• Use common linguistic, domain-independent 
features to detect MT sentences:	



• Automatic Part of Speech tags	



• Function Words	



• Inspired by works on “Translationese” (Koppel and 
Ordan, 2011) and on Machine Translation Detection 
(Arase and Zhou, 2013)



Features

Function	


Words

POS	


tags



Experiments Outline

• Use a linear SVM classifier with the Function-word 
and POS features to classify human vs. MT 	



• For a given MT system:	



• Perform a 10-fold cross validation across the 
different sentences in the test set	



• Measure the correlation of the result with the 
translation quality (BLEU or human evaluation)



• Examined 7 French-English commercial MT system 
outputs (Google Translate and 6 others via the 
itranslate4.eu website)	



• Tested 3 different feature settings (POS, function 
words and both)	



• Compared the use of reference and random, non-
reference human sentences	



• 20,000 sentences per class (human/MT), taken from 
the Hansard Corpus (Germann, 2001)

Experiment 1 - Commercial MT Systems

http://itranslate4.eu


Results - Commercial MT Systems

• Very strong 
reverse correlation 
with BLEU - R^2 
from 0.779 up to 
0.978	



• Up to ~90% 
detection accuracy

*Each point represents an MT system
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• Very strong 
reverse correlation 
with BLEU - R^2 
from 0.779 up to 
0.978	



• Up to ~90% 
detection accuracy 	



• The better the 
translation quality 
is, the harder it is 
to correctly detect 
it



• Trained 7 French to English phrase-based MT systems, using the 
Moses SMT toolkit (Koehn et al, 2007)	



• Train data (LM + Translation):  Europarl corpus (Koehn, 2005)	



• Evaluation data: Hansard corpus (Germann, 2001) 	



• Varied both LM and translation model sizes, resulting in a wide 
variety of BLEU scores:

Experiment II - In-House MT Systems



Results - In-House MT Systems

• The correlation is 
consistent among the 
in-house systems as 
well	



• High correlation with 
BLEU, using only 
random, non-
reference sentences



Experiment III - Correlation with 
Human Evaluation

• BLEU scores are nice, but how about correlation 
with real (human) evaluation?	



• Examined 13 French-English MT systems and 
their human evaluations from WMT13’ (Bojar et 
al., 2013) 	



• Used reference sentences and random, non-
reference sentences from WMT 12’ (Callison-
Burch et al., 2012) as the human data	





Results - Correlation with Human 
Evaluation

Using 
Reference 
Sentences

Using non- 
Reference 
Sentences

Good results with 
reference sentences

“Blunt” outlier with non-
reference sentences



Syntactic Features

• The outlier is an instance of the “Joshua” MT 
system (Post et al., 2013)	



• This system is syntax based, a fact that may 
have “confused” the classifier	



• We hypothesize that using syntax based 
features in the classifier will help



Syntactic Features
• Parse each sentence using the Berkeley Parser (Petrov 

and Klein, 2007)	



• Extract one level non-terminal CFG rules from each 
tree 	



• Use as the only features in the classification task



Results - Correlation with Human 
Evaluation using syntactic features

• The outlier is gone	



• High correlation with 
human evaluation score - 
R^2 = 0.829 (vs. 0.556 
before) 	



• No use of reference 
sentences in the 
process      



Why does it work?

• The classifier uses much more data than 
the standard approaches when evaluating a 
single sentence	



• Our approach measures fluency, as we 
don’t use any reference translations	



• There is a strong correlation between 
fluency and overall translation quality, given 
the sentences are MT output	





Conclusions

• It is possible to detect machine translation in 
monolingual corpora at sentence level	



• Strong correlation resides between detection 
accuracy and translation quality	



• This correlation holds whether or not a 
reference set is used	



• It is possible to estimate translation 
quality without reference sentences



Future Work

• Apply our methods to other language pairs 
and domains	



• Explore additional features and feature 
selection techniques	



• Integrate our method in a machine 
translation system (during training or 
decoding phases)	



• Acquire word-level quality estimation



Questions?


