Automatic Detection of Machine Translated Text and Translation Quality Estimation

Roee Aharoni, Moshe Koppel and Yoav Goldberg Bar Ilan University ISCOL 2014

Motivation

- Automatic MT evaluation requires humantranslated reference sentences
 - BLEU (Papineni et al., 2001)
 - METEOR (Lavie et al, 2004)
- Reference sentences are "expensive", especially for new domains and resource-poor languages
- We would like to estimate the quality of a given MT output, without the use of reference sentences

Our Approach

- Classify text, at sentence level, as MT or human
- Use the classification accuracy as a "proxy" for quality estimation
- The more our classifier confuses MT sentences as human sentences, the better the translation quality is

Our Approach

Our Approach

Features

- Use common linguistic, domain-independent features to detect MT sentences:
 - Automatic Part of Speech tags
 - Function Words
- Inspired by works on "Translationese" (Koppel and Ordan, 2011) and on Machine Translation Detection (Arase and Zhou, 2013)

Features

	Example		
	"These days, all but one were subject to a vote,		
	and all had a direct link to the post September 11th."		
	"these days, except one were the subject of a vote,		
	and all had a direct link with the after 11 September ."		
	"From these days, all except one were the object of a vote,		
Function	and all were connected a direct link with after September 11th."		
I UNCLON	"Of these days, all except one were making the object of a vote		
Words	and all had a straightforward tie with after September 11."		
	"These days, very safe one all made object a vote,		
	and had a direct link with after September 11th."		
	"From these all days, except one operated object voting,		
	and all had a direct rope with after 11 septembre."		
	"In these days, all safe one made the object in a vote		
	and all had a direct connection with him after 11 of September."		
	DT NNS, DT CC CD VBD JJ TO DT NN,		

tags

These days, all but one were subject to a vote, n NN TO DT IJ [NNP] (NN) and all had a direct link to the post September 1th.

Ģ

Experiments Outline

- Use a linear SVM classifier with the Function-word and POS features to classify human vs. MT
- For a given MT system:
 - Perform a 10-fold cross validation across the different sentences in the test set
 - Measure the correlation of the result with the translation quality (BLEU or human evaluation)

Experiment I - Commercial MT Systems

- Examined 7 French-English commercial MT system outputs (Google Translate and 6 others via the <u>itranslate4.eu</u> website)
- Tested 3 different feature settings (POS, function words and both)
- Compared the use of reference and random, nonreference human sentences
- 20,000 sentences per class (human/MT), taken from the Hansard Corpus (Germann, 2001)

Results - Commercial MT Systems

- Very strong reverse correlation with BLEU - R^2 from 0.779 up to 0.978
- Up to ~90% detection accuracy

Results - Commercial MT Systems

- Very strong reverse correlation with BLEU - R^2 from 0.779 up to 0.978
- Up to ~90% detection accuracy
- The better the translation quality is, the harder it is to correctly detect it

Experiment II - In-House MT Systems

- Trained 7 French to English phrase-based MT systems, using the Moses SMT toolkit (Koehn et al, 2007)
- Train data (LM + Translation): Europarl corpus (Koehn, 2005)
- Evaluation data: Hansard corpus (Germann, 2001)
- Varied both LM and translation model sizes, resulting in a wide variety of BLEU scores:

	Parallel	Monolingual	BLEU
SMT-1	2000k	2000k	28.54
SMT-2	1000k	1000k	27.76
SMT-3	500k	500k	29.18
SMT-4	100k	100k	23.83
SMT-5	50k	50k	24.34
SMT-6	25k	25k	22.46
SMT-7	10k	10k	20.72

Results - In-House MT Systems

 $R^2 = 0.789$

- The correlation is consistent among the in-house systems as well
- High correlation with BLEU, using only random, nonreference sentences

Experiment III - Correlation with Human Evaluation

- BLEU scores are nice, but how about correlation with real (human) evaluation?
- Examined I3 French-English MT systems and their human evaluations from WMTI3' (Bojar et al., 2013)
- Used reference sentences and random, nonreference sentences from WMT 12' (Callison-Burch et al., 2012) as the human data

Results - Correlation with Human Evaluation

"Blunt" outlier with nonreference sentences

 $R^2 = 0.774$ Using Reference 64 **Sentences** detection accuracy (%) 62 60 58 0.3 0.50.6 0.4 human evaluation score

Syntactic Features

- The outlier is an instance of the "Joshua" MT system (Post et al., 2013)
- This system is syntax based, a fact that may have "confused" the classifier
- We hypothesize that using syntax based features in the classifier will help

Syntactic Features

- Parse each sentence using the Berkeley Parser (Petrov and Klein, 2007)
- Extract one level non-terminal CFG rules from each tree
- Use as the only features in the classification task

Results - Correlation with Human Evaluation using syntactic features

 $R^2 = 0.829$

- The outlier is gone
 High correlation with human evaluation score -R^2 = 0.829 (vs. 0.556
- No use of reference sentences in the process

before)

Why does it work?

- The classifier uses much more data than the standard approaches when evaluating a single sentence
- Our approach measures **fluency**, as we don't use any reference translations
- There is a strong correlation between fluency and overall translation quality, given the sentences are MT output

Conclusions

- It is possible to detect machine translation in monolingual corpora at sentence level
- Strong correlation resides between detection accuracy and translation quality
- This correlation holds whether or not a reference set is used
 - It is possible to estimate translation quality without reference sentences

Future Work

- Apply our methods to other language pairs and domains
- Explore additional features and feature selection techniques
- Integrate our method in a machine translation system (during training or decoding phases)
- Acquire word-level quality estimation

